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Abstract 

The economic, health, and environmental costs of kerosene, candles, and other fuel-based lighting are well-

documented. As a result of efforts by the World Bank and other organizations, a new category of solar-powered 

lighting, the solar portable light, is being promoted as a more affordable alternative to fuel-based lighting. This paper 

uses the UC Davis Lighting the Way Zambia project as a case study to understand the minimum manufacturing costs 

of an affordable solar portable light. The study examines functional preferences of users in Zambia, translates these 

into performance requirements, and then determines the cost implications for those requirements. The results 

suggest that an 18-lumen solar portable light with a 4-hour run time would meet many users’ needs, and could be 

manufactured for approximately US$9 per unit and sold for approximately US$18-$20 retail (about half the industry 

average), resulting in a payback period of about 5 months. While no definitive threshold has been established for 

affordability in this product category, users in Zambia indicated that a payback period of 2-3 months would result in 

much higher rates of adoption. The paper concludes with some discussion of ways in which manufacturing costs could 

be reduced, although there is currently no clear design configuration that would achieve a 2-3 month payback for 

customers in Zambia.  
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1 More details on this project freely available at the UC Davis Program for International Energy Technologies website, 
http://piet.ucdavis.edu. 
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Introduction 
An estimated 1.5 billion people (including 74% of the population of sub-Saharan Africa) do not have 

access to electricity, and must rely on fuel-based lighting—kerosene, candles, wood, and other biomass 

(UNDP 2009).  Fuel-based lighting carries high costs for end-users worldwide, including: economic costs – 

$38 billion a year, or an average of $77/year per household; health/safety costs – thousands suffer from 

indirect effects of combustion including smoke inhalation, house fires, and burns; and environmental 

costs – burning of lighting fuels releases an estimated 190 million metric tons CO2 equivalent (Mills 2005). 

The most common fuel worldwide, kerosene, is an inefficient source of energy for illumination, such that 

lower-income households not only pay significant amounts for the kerosene that they use, but the lighting 

“service” they receive—defined as the amount and quality of illumination—is significantly lower as 

compared to electrified households or even propane lanterns. For example, users of basic kerosene lamps 

pay 150 times more per useful unit of lighting than users of grid-connected compact fluorescents (Mills 

and Jacobson 2008). In Africa, population growth is expected to outstrip growth of the electrical grid 

infrastructure, meaning that the current unelectrified population of 110 million households is projected to 

increase to 120 million households by 2015 (LADM 2010). The mounting pressures of population growth 

and environmental sustainability make fuel-based lighting an important issue to address. 

 

The increased attention on the off-grid lighting industry has resulted in new research over the last 10 

years, ranging from performance analysis of kerosene lamps to qualitative studies of health impacts, but 

little research has been published that connects user preferences and functional performance with actual 

product component costs. Although some of the organizations developing SPLs are nonprofit or 

university-based, many are for-profit entities, and almost all those contacted by the author were reluctant 

to share information on their product designs, manufacturing costs, and operations (including pricing). 

This reluctance is somewhat surprising, given that the technology used in virtually all SHS and SPL systems 

is standard, off-the-shelf circuitry and components. 
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This research addresses this gap in the literature using a specific project in Zambia as a case study. The 

research sought to 1) understand Zambian users’ needs and preferences around off-grid lighting, 2) 

develop functional requirements based on those needs/preferences, and 3) connect those functional 

requirements to actual product component costs. The results indicated that a solar-powered light that 

offers at least 15 lumens of illumination, for 4 hours per night, with a replaceable battery, may be 

acceptable to candle and kerosene users in Zambia. By focusing on an energy efficient LED, a light that 

met these performance requirements was manufactured at a cost $8.86 per unit, which would result in a 

retail price of approximately $20. Given the small (<5,000) volume of the initial manufacturing, the 

assembly costs and passive electronic components were the largest components of the product cost, 

meaning that higher-volume runs would see significant cost decreases. 

 

The paper begins with a brief overview of solar photovoltaic technology, and its history as an alternative 

power source for lighting in the developing world. This is followed by background of the project and 

Zambian demographics. The methodology section is separated into two categories: methods for 

understanding user preferences, and methods for understanding product component costs. This is 

followed by a results section, and then a description of the final product design and cost analysis.  

 

Project background  

Solar technology as an alternative 
For sub-Saharan Africa and other regions that receive substantial solar radiation year-round, off-grid 

lighting systems that use solar photovoltaic (PV) technology are considered a promising alternative to 

fuel-based lighting. Solar-powered lights can be used anywhere there is sunlight, they charge with use of 

the solar panel during daylight hours, and their operation creates no soot, emissions, or direct fire risks. 

For these reasons solar PV technology has been widely promoted as a cost-effective means to provide 

lighting services for rural areas where it is too expensive to extend the electricity grid.  
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The longer-term interest in solar PV systems has accelerated in recent years, as concerns over greenhouse 

gas emissions have increased the promotion of solar technology as a clean, renewable resource, 

especially when it replaces the use of fossil fuels such as kerosene (Wamukonya 2005). It is important to 

note, however, that benefits of solar PV systems are valued differently among stakeholders. End-users are 

most interested in the financial savings and performance improvements over fuel-based lighting, and it is 

typically only international NGOs, regulators, or private sector investors that place direct value on the 

aggregate environmental benefits. (Wamukonya 2005).  

 

Solar home systems 
The most widely promoted category of solar technology for off-grid lighting use is the solar home system 

(SHS). SHSs have been used for decades, with millions of systems distributed in developing countries 

(Nieuwenhout, van Dijk et al. 2000).  SHSs typically range from 20-100 watts, and at the higher power 

levels can support other devices in addition to lights, such as TVs, radios, or mobile phone chargers. SHSs 

typically comprise one or more solar PV panels, a charge controller, a battery, and DC-compatible 

fluorescent light bulbs.  

 

Proponents of SHSs promote the cost-effectiveness of these systems, often using “levelized cost” or “total 

cost of ownership” to show that the full lifetime costs of the system per energy service provided are low, 

due to the essentially negligible operating costs. However, despite widespread funding and subsidies from 

international development agencies, NGOs, and local governments, market penetration of SHSs has been 

limited. Primary barriers to adoption include the high initial investment cost (typically $200-$600 retail 

price) and the technical expertise needed for professional installation and maintenance (Nieuwenhout, 

van Dijk et al. 2000; Peon, Doluweera et al. 2005; Wamukonya 2005). The high initial investment cost 

requires financing, subsidies, donations, or some combination of these, thereby limiting adoption of these 

systems. The one partial exception is in Bangladesh, where a subsidized SHS program that relies on the 

country’s extensive micro-finance network to finance, sell, and install systems, has sold 645,033 systems 
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as of August 2010 (IDCOL 2010). But in regions and communities where appropriate credit mechanisms 

are not readily available, SHSs are less accessible.  

Solar portable lights 
A growing number of smaller off-grid lighting products, sometimes referred to as “solar lanterns, “micro” 

or “pico” solar lights, are currently entering the market. The author follows the recent convention of the 

Lighting Africa Development Marketplace and refers to this category as “solar portable lights” or SPLs 

(LADM 2010). These systems typically use less than 10 watts of power, cost $20-$70, and are self-

contained products that emulate lanterns, torches (flashlights), or desk lamps in size and form factor. 

Compared to SHSs, solar portable lights are generally less robust, with lower service capacity, lower 

efficiencies, and shorter product life spans. However, the lower retail price of solar portable lights, around 

10% of a SHS, makes them more accessible to a broader segment of unelectrified households. Therefore 

while less cost-efficient compared to the larger SHS or community-scale solar systems, solar portable 

lights can still offer significant cost, performance, and health benefits to the end user switching from fuel-

based lighting. Table 1 provides a basic comparison between the costs and features of SHSs and SPLs.  

 

Table 1: Comparison of SHS and solar portable lights2 

System Typical 
upfront 
cost (USD) 

Lighting 
service   

Other 
services? 

Typical 
product 
warranty 

Requires 
technical 
installation 

Requires 
maintenance 

Solar home 
system 

$200-$600 450-3600 
lumens 

Potentially 3-20 years Yes Yes 

Solar 
portable 
light 

$20-$80 10-70 
lumens 

No 0-1 year No No 

 

 

Demand for lighting that is more affordable than that provided by SHSs is reflected in positive customer 

reactions to SPL product testing with kerosene users in sub-Saharan Africa (Mills 2007; Radecsky, 

                                                         
2 SHS estimates are based on data from a major SHS manufacturer in Bangladesh. The warranties offered for these SHSs are: 3 years 
for charge controller, 5 years for battery, and 20 years for solar PV. SPL estimates based on LADM (2010) market report, 
manufacturer warranties, and anecdotal evidence.  
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Johnstone et al. 2008; LADM 2009) and, more tellingly, in growing global sales figures for those 

organizations with established SPL products and distribution (Friedman 2010; LADM 2010). However, 

even at a cost of $20-$70 per SPL, many poor still cannot pay full retail price without some type of 

financing. So despite having an upfront cost that is an order of magnitude lower than a SHS, solar portable 

lights that require financing face a significant barrier to widespread adoption among many low-income 

households. There is therefore movement among companies that develop and distribute SPLs toward 

designing even lower-cost models in the $5-$20 range: the World Bank reports that at least a dozen of its 

accredited SPL manufacturers plan on introducing lower-cost products (LADM 2010). Some of the leaders 

in the SPL industry who are developing lower-cost SPL models include d.Light, Cosmos Ignite, and 

Barefoot Power. 

 

In summary, the off-grid solar-powered lighting industry appears to be following a general trend toward 

increasingly lower-cost lighting alternatives to kerosene, moving from solar home systems, to solar 

portable lights, to ultra-affordable solar portable lights. This trend is likely driven in part by movement 

away from philanthropic or heavily subsidized distribution in favor of market-based distribution models, 

as well as by steadily decreasing component costs for solar PV, LEDs, and other electronics, which enables 

lower manufacturing costs for equal or superior product performance.  

 

Lighting the Way Zambia 
Partly as a response to the growing demand for solar portable lights, the World Bank launched its Lighting 

Africa Development Marketplace (“LADM”) program in 2008 to help spur innovation and growth in the 

solar portable light industry (LADM 2008).  The UC Davis “Lighting the Way Zambia” team was one of 16 

organizations that received funding from LADM to design, build, and distribute an affordable solar 

portable light to compete with fuel-based lighting. The UC Davis team selected Zambia as its focus country 

due to principal investigator (PI) Kurt Kornbluth having an established relationship with a local NGO, 

Disacare, with whom he had worked with previously.  
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Given that the relatively high upfront cost of most SPLs puts them out of reach of lower-income 

households, the UC Davis proposal to the World Bank committed to developing a solar portable light that 

could be purchased by kerosene and candle users without subsidy or financing. The design process was 

therefore framed by the focus on an affordable retail cost, and understanding whether it was possible to 

meet users’ minimum functional, aesthetic, and performance requirements within that cost structure. It is 

worth noting that the World Bank LADM funded a variety of different business models (e.g., rental instead 

of purchase of lights) and product designs (e.g., using a hand-powered charging mechanism instead of 

solar PV).  

 

As part of the project grant, the UC Davis team worked with Disacare to establish a Zambian business to 

distribute the lights. Disacare provided administrative oversight and operational support, including 

transportation, office space rental, accounting services, legal services, and other administrative support. 

The business “Lighting the Way Zambia” was registered with local authorities, and the author hired and 

trained two staff members on contract. The two staff members helped UC Davis team members conduct 

research while in Zambia, and also conducted ongoing market research on their own. However, the staff 

members were hired primarily as sales and marketing managers to distribute the product once it was 

manufactured. Due to unexpectedly lengthy delays with the manufacturing process, the staff members’ 

contracts were eventually allowed to lapse as there was no product for them to sell, and no more funding 

to pay their salaries. In October 2011, six months after their contracts ended, the first pilot run of the 

product was ready to be shipped. 

 

The UC Davis team was led by PI Kurt Kornbluth and the author, with other graduate students providing 

specific research tasks or support functions. The author served as project manager, with responsibilities 

that included market research and analysis, product development, business development and training in 

Zambia, subcontractor management, and reporting. 
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Country background: Zambia  
Zambia has a population of almost 12 million, more than half of which live in rural areas. While an 

estimated 18% of the total population has access to grid electricity, only 2% of those living in rural areas 

have grid access (LADM 2009). Therefore, a core target customer segment was the rural communities that 

have little chance of ever having electricity extended to their area. Another customer segment was 

represented by households living in peri-urban communities, on the outskirts of the urban core. These 

communities, called “compounds” in Zambia, are often unplanned or informal settlements, and while 

geographically close to the city center, are generally excluded from city services such as water, sewer, and 

electricity. This research focused on these two customer segments as potential end-users, and therefore 

sought to understand their preferences and cost constraints. 

 

Recent research commission by the World Bank (LADM 2009) showed average income levels in Zambia of 

approximately US$150 per month, with urban incomes typically slightly higher than rural incomes. As a 

landlocked country with generally poor infrastructure, the cost of goods in Zambia is relatively high, 

especially in rural areas. The World Bank study reported average expenditure on off-grid lighting to be in 

the range of $3.50 - $4.75 per month. Somewhat unique to Zambia is a much higher incidence of candle 

usage vs. kerosene, or paraffin. The World Bank study showed a majority of unelectrified households 

across Zambia use candles (79%) instead of kerosene (14%). This contrasts sharply with Kenya, which is 

more representative of sub-Saharan African countries in general, where 5% of households use candles 

and 67% use kerosene (LADM 2009; LADM 2009). The UC Davis team sought to validate this key 

difference in Zambia, and explore any effects this preference for candles might have on acceptance of 

alternatives.  
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Previous research 
The two most comprehensive sources of research specifically on fuel-based lighting and the SPL market 

are the World Bank and the Lumina Project, both of which publish non-peer-reviewed reports. The World 

Bank has sponsored the Lighting Africa Development Marketplace program (see Project Background), 

which commissioned extensive market research in five countries in sub-Saharan Africa that is available 

free on its website. These studies are country-specific market analyses that include very detailed 

demographic and lighting usage/behavior information. The Lumina Project, from Lawrence Berkeley 

National Laboratory, produces both field and laboratory studies that it makes freely available; the latter 

includes photometric testing of kerosene lanterns and LEDs (including recommended test procedures and 

metrics), while the former includes studies in Kenya and other countries evaluating household usage of 

kerosene and reactions to SPLs.  

 

The majority of academic peer-reviewed articles are older and focus on SHSs (Nieuwenhout, van Dijk et al. 

2000; Wamukonya 2005), with the exception of two articles recently published specifically on SPLs, or 

“solar lanterns” (Velayudhan 2003; Adkins, Eapen et al. 2010). However, very few reports, and no peer-

reviewed academic articles, were found that had detailed product performance criteria linked to cost 

information. Possible reasons for this are that researchers believe that prices change too quickly for this 

research to be relevant, or that researchers are not involved with commercialization aspects of such 

projects. 

 

Research methodology 
The research conducted can be grouped into two categories: that aimed at understanding user 

preferences, and that exploring how functional requirements translate into actual manufacturing costs.  

Although the UC Davis project was focused on the Zambian market and its users, the latter category of 

research on development and production costs should be relevant for products sold in other markets 

outside Zambia. It is worth noting, however, that factors such as transportation infrastructure, 

governmental regulation, and import tariffs/taxes can all have significant effects on final retail prices. 
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Understanding user preferences 
The team used both primary and secondary data to inform its understanding of user preferences around 

lighting, including current lighting usage habits, lighting expenditures, and general preferences toward 

form and functionality. The secondary data included comprehensive, country-specific quantitative and 

qualitative research studies conducted and published by the World Bank LADM prior to, and during, the 

project period (LADM 2009; LADM 2009). Other reports used included several from the Lumina Project 

(Mills 2003; Radecsky, Johnstone et al. 2008; Jacobson 2009). While the field research done by the Lumina 

Project team took place in Kenya, some of the results were deemed relevant and applicable to the 

Zambian market. For example, the Lumina team conducted field trials with micro-businesses to evaluate 

user preferences to different levels of illumination for their business, measuring actual lux output on the 

display of products at different kinds of micro-businesses, such as produce vendors (Radecsky, Johnstone 

et al. 2008). 

 

The UC Davis project team, led by the author and project PI Kurt Kornbluth, and Zambian staff conducted 

primary research to validate and extend the data in published reports. Over the course of two trips to 

Zambia (approximately 7 weeks total), the team conducted research with kerosene and candle users to 

learn about current lighting behavior, perceptions of existing lighting, and lighting expenditures, both in 

terms of initial investment costs and ongoing operating expenses.3 Methods included focus groups, one-

on-one interviews, and in-person surveys. The research was conducted in rural and peri-urban 

communities around Lusaka. Rural communities included Kanakantapa, Kafue, Chilanga, and Chongwe; 

peri-urban communities of Lusaka included Chunga, George, Desai, Chawama, Kanyama, and Kalikiliki.  

 

Because one of the goals of the project was the establishment of a financially and technically sustainable 

business in Zambia, efforts were made to train the Zambian staff to conduct objective market research. 

However, the staff had been hired based on their marketing and sales skills, not research capabilities, and 

                                                         
3 The team also spent time considerable time researching distribution channels, marketing opportunities, and 
potential retailers to inform future marketing and operational strategies, but this lies outside the scope of this paper. 
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the training provided by the author was rudimentary at best. As a result, the method of engagement, 

degree of scientific rigor, and objectivity of analysis varied widely based on who was leading the research. 

See the section Limitations for more on this topic. 

 

For the focus groups, one of the Zambian staff would contact a community leader with which he had an 

existing relationship. Requirements for communities were that they were geographically close enough to 

Lusaka such that visits could be conducted in one day. The community had to be either completely off-

grid (rural or peri-urban), or connected to the grid but with majority of residents without connections 

(peri-urban). The community leader was instructed to assemble a group of community members who met 

two requirements: being a full-time resident of the community, and being a user of candles or kerosene 

for lighting. The focus groups were scheduled for the evening in order to provide the most realistic 

context for demonstrating the relative illumination of candles, kerosene lamps, and prototype SPLs. 

Typical group size ranged from 4 to 12 people. A standard script with a set of questions was usually 

followed, though this varied depending on the researcher conducting the focus group. The questions were 

also refined over time in reaction to responses given. However, the key information being sought stayed 

constant: current lighting products (e.g., candles or kerosene), current lighting behavior (e.g., how many 

lit at once, which rooms lit), current lighting expenditures (e.g., both up-front and operating), and 

reactions to a demo of the prototype. After the focus group, and sometimes before, there were often 

informal interviews conducted with other community members who were either not invited or not 

interested in participating in the actual focus group itself.  

 

Surveys were conducted by both UC Davis and Zambian team members in two ways: by assembling a 

large group of community members and passing out paper surveys to be filled out by the respondents, 

and by going door-to-door with a clipboard and asking residents to answer similar questions, with the 

answers recorded by the researcher. While the exact questions varied, they were very similar to the 
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questions used in the focus groups concerning existing lighting behavior and costs (see Appendix A for the 

list of questions).  

 

The UC Davis team conducted six focus groups and approximately 45 interviews (of these, the author 

conducted four focus groups and approximately 20 interviews), and conducted a single survey of 50 

respondents. After the two trips by UC Davis, the Zambian staff continued the research using the same 

methods. The Zambian team conducted interviews with 122 respondents, and 2 focus groups with 45 

respondents.  

 

Table 2.  Location of research efforts by Zambian team 

Village/Community  # respondents Method 
Kafue 25 interview 
15 miles 30 interview 
Chilanga 20 interview 
Chisamba/Chibombo 15 interview 
Lilanda 16 interview 
Mandevu 30 focus group 
Chongwe 15 focus group 
Kalingalinga 16 interview 

 

Understanding manufacturing costs 
The other category of research, exploring costs of production for a solar portable light, was conducted 

primarily by the author. This research was intended to provide a baseline set of product component costs 

that were considered to provide the minimum SPL performance acceptable to kerosene and candle users 

in Zambia. Matching component costs with SPL performance attributes was also intended to provide 

other practitioners with rudimentary guidance on cost-performance tradeoffs in product design. This was 

accomplished by plugging cost estimates into an optimization calculation to determine a cost-optimized 

configuration for an SPL that met the specified performance requirements.  
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The author used published data on kerosene lamp performance (Mills 2003) to assess baseline 

performance in terms of illumination, measured in luminous flux, or lumens. This key metric was then 

used as a reference point in the optimization calculation, and the other system component performance 

was based on achieving this lumen output. The general circuit design was adapted from a published 

design on an integrated circuit (IC) manufacturer’s datasheet (Zetek 2007). This particular IC was designed 

specifically as a low-power LED driver, so the circuit needed only minor modification. Given the circuit and 

IC performance, the project team then used a simple optimization calculation and retail prices of key 

components to select the configuration that met the performance requirements for the lowest cost. 

 

Significant effort was made to determine component and manufacturing costs that would be 

generalizable production prices for manufacturing the product in mainland China. Component prices used 

in this calculation were based on retail prices for low (<10,000 pieces) quantities. For the solar PV cell, 

battery, and cabling, the project team used quotes from Chinese suppliers found through Alibaba.com, a 

China-based company providing listings, purchasing, and other online business services to importers and 

exporters around the world. For the LED, the team contacted that LED manufacturer’s East Asia 

distributor for pricing. The less expensive and less significant (e.g., passive) components were priced from 

one of the largest North American electronics distributors, Digikey, for convenience and very specific 

pricing—it can be very difficult to get a Chinese OEM manufacturer to provide a detailed cost breakdown 

for different sized resistors or transistors; typically these are so cheap that they are bundled together with 

other passive components. For PCB fabrication and assembly, general assembly, packaging, quality 

assurance, and other costs, the team used actual costs from an OEM manufacturing partner in Shenzhen, 

China.  

 

Results 
In general, the field research conducted in Zambia supported existing data (e.g., from LADM and Lumina) 

around user behavior and preferences around off-grid lighting. Translating these preferences into 

performance requirements invariably included some subjective judgment calls; one way in which the 
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team attempted to mitigate this bias was to use a rule of always choosing the least costly option that 

would still satisfy basic performance. For example, many respondents suggested that an SPL should have 

a more robust switch, possibly with multiple “modes,” but the project team determined that the most 

basic on-off switch could still offer the needed functionality. 

User preferences 
The basic profile of the off-grid household that emerges from the author’s research can be characterized 

by the following:  

 

• 4-5 people live in the home 

• Most households use either candles exclusively, or both candles and kerosene; very few use 

kerosene exclusively 

• Usually 2 or more rooms are lit simultaneously for at least part of the night 

• Lighting is used for 3-5 hours per night 

• Candle costs range from $0.10 each (smallest) to $0.25 each (largest, high-quality)  

• Candles last 1-2 nights, depending on size and quality 

• Monthly expenditures on lighting range from $4-$8  

• Monthly household income is less than $150 

• Candles/Kerosene are purchased multiple times a week in small quantities, from small shops 

within the community, by any member of the household 

 

The results around user preferences were similar, in most cases, to previously published data on off-grid 

lighting users reported by the World Bank (LADM 2009). For example, results for hours of lighting per 

night, household income, types of lighting, and monthly expenditures were very similar. Some differences 

indicated that the LADM research was conducted in more rural areas (e.g., higher prevalence of grass 

thatch roofs vs. corrugated iron; slightly lower household incomes). 
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The question of why Zambians overwhelmingly prefer candles over kerosene, or paraffin, is perplexing 

and could not be answered completely satisfactorily. Most people in interviews stated their preference 

for candles was because they burn cleaner, with less soot and fumes, and from casual observation, this 

seems to be the case. However, candles are slightly more expensive (especially high-quality candles, 

which last longer) than kerosene. A brief investigation into historical government subsidies, distribution 

issues, or national-scale shortages did not reveal any events or patterns that might account for the 

prevalence of candles. While it is perfectly reasonable to believe users’ stated preference for candles, the 

fact that surrounding countries all have an equally strong prevalence of using kerosene for lighting casts 

some doubt on it being simply a matter of user taste. 

 

The results suggested an interesting difference in gender roles for who purchases candles/kerosene vs. 

who would purchase a solar-powered light. Respondents indicated that current purchase behavior is 

relatively equally shared by the man of the household, the woman of the household, and the children. But 

when asked about purchasing a solar-powered light, the response was strongly skewed toward the man 

of the household. It is unclear whether this is because of the higher cost of a solar-powered light, because 

it is a higher-tech product, or because of some other reason. Other countries show a much stronger 

tendency for the woman of the household to manage the energy budget, including purchasing lighting 

fuel (LADM 2009), and some practitioners have thus advocated for marketing solar-powered lighting 

products to the woman. However these results raise some doubts about the validity of this approach in 

Zambia.  

 

In addition to the typical user preference information around lighting, the project team also asked 

questions regarding mobile phones in order to better understand user behavior, attitudes, and 

expenditures for what is for many households their single largest technology investment. This was 

considered relevant because mobile phones have both a significant upfront cost and an ongoing 

operational cost (charging), yet have achieved very high penetration rates. Many solar-powered lights are 
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now being produced that can charge mobile phones directly, offering users both lighting and charging 

functionality. Many in the field, including the author, believe that this synergy will be a fundamental 

driver of SPL growth—in fact, demand for mobile charging may be much more important than demand for 

clean lighting.  

 

The table below shows data from the largest single survey that was conducted; other surveys and 

interviews had similar results. Note that much of the survey and interview data collected in Zambia was 

lost when the head Zambian staff member, Yuda Tembo, left the organization. Mr. Tembo left the 

organization on bad terms, and felt entitled to take with him the project laptop, camera, and paperwork.4

                                                         
4 Mr. Tembo felt that he was owed additional compensation beyond what was in his contract. The issue started with 
an accounting oversight on the part of Disacare, whereby taxes that were taken out of Mr. Tembo’s salary and meant 
to be paid to the Zambia Revenue Authority (ZRA) had not been paid to the ZRA. Mr. Tembo’s response was to 
suggest that those funds be instead given to him. When Disacare declined and insisted on correcting the error by 
paying those funds (and a late penalty) to the ZRA, Mr. Tembo threatened legal action. Disacare worked with a 
Zambian lawyer to ensure that they were complying with all aspects of Zambian contract law and refused to meet Mr. 
Tembo’s demands. When Mr. Tembo left with the project equipment and documents, Disacare reported the theft to 
the police. Unfortunately, the police have requested ongoing payments from Disacare to fund their investigation and 
possible collection of the stolen equipment. The incident has served as a potent reminder of the challenges and high 
costs of doing business in Zambia.  
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Table 3. Results from largest survey, N=50, conducted by the author in Kanakantapa, Zambia5 

Type of light used Candles only Kerosene only Both 
   22 1 27 
 People in the home 1-2 3-4 5-6+ 
   4 21 25 
 Number of lights used simultaneously 1 2 3+ 
   8 23 18 

 Person who purchases lighting Man only Woman only Either 
   19 15 16 
 Frequency of purchase Daily Weekly 

    30 20 
  Distance from home purchased, in km 0-5 6-10 10+ 

   47 0 3 
 Monthly expenditure on lighting, in Kwacha6 5k-20k 21k -30k 31k-40k 41k + 

  7 21 15 6 
Activities conducted using light Visiting Homework Cooking Business 
  11 35 48 19 
Whether children light candle/kerosene themselves Yes No 

    29 21 
  Hours of lighting used per night 1-2 3-5 6+ 

   4 39 6 
 Type of roof Asbestos Grass Iron sheets 
   9 0 40 
 Level of education of respondent Primary Secondary College 
   25 21 3 
 Household monthly income 150,000-

500,000 
500,000-
750,000 750,000+ 

   23 17 5 
 Person who would decide to buy a solar-powered light Man only Woman only Either 
   24 6 20 
 Whether respondent owns a mobile phone Yes No 

    49 1 
  How much is spent on phone charging per week 5,000 6,000 10,000 

   18 15 1 
 Cost of phone, in Kwacha 50,000- 

100,000 
100,000-
150,000 150,000+ 

   25 11 9 
  

Translating user preferences into performance requirements 
The results of the field research into user preferences were used to define specifications for the minimum 

features and performance of the product. This translation is subjective in at least two dimensions: first, 
                                                         
5 Location was a completely off-grid rural community called Kanakantapa, 4 hours from Lusaka. Survey respondents 
self-selected (all who volunteered to participate were surveyed),  N = 50. Not all respondents answered every 
question; for those questions with exclusive answers, responses that recorded a positive for more than one answer 
were discarded for that question.  

6 Exchange rate at time of research, June 2009, was 5,100 Kwacha = 1 USD 
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determining what constitutes “performance” and how that is measured, and second, determining for 

each measurement of performance what constitutes an acceptable “minimum” level.  

 

Based on previous studies on user preferences for SPLs (Mills 2007; Radecsky, Johnstone et al. 2008), 

general SPL industry analysis (LADM 2010),  and the project team’s own assessment, the core 

performance areas relevant to all SPLs were determined to be: illumination intensity, illumination quality, 

run time, charge time, and general maintenance. Other possible performance characteristics, such as 

multiple lighting modes, mobility, and phone charging, were determined to be desirable functionality but 

beyond the scope of a basic SPL intended to replace candles and kerosene.7 For each of these five 

performance areas the project team defined specifications, as summarized in Table 5.  

 

Of these, light output was considered the most important performance criterion to define. Light output is 

typically measured in one of two ways, based on the type of light and its application: for task lights, such 

as torches or desk lamps, light is often measured in lux, which can be thought of as the amount of visible 

light that contacts a surface at a certain distance. For example, a desk lamp may provide 200 lux at 1 

meter from the lamp. For ambient lights, output is measured in lumens, which can be thought of as the 

total visible light being emitted by a lamp in all directions. The relationship between these can be 

expressed by the form:  1 lux = 1 lumen/meter2. Because the final design was an ambient ceiling light, 

measurements were based on lumens.  

 

What constitutes “acceptable” light levels depends on many variables, including the type of task, 

environmental conditions, eyesight of the user, and more (Alstone, Jacobson et al. 2010). Therefore it was 

decided that the most common existing lighting product—a candle or basic kerosene wick lamp—would 

serve as a baseline indicator of minimally acceptable light output. Laboratory measurements for typical 

                                                         
7 This is not a critique or examination of the value to the customer for these kinds of features. It could very well be 
that the most successful solar-powered lights will turn out to be those that include phone charging.  
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kerosene lamps show that light output can vary significantly based on lamp type, wick size, and quality of 

kerosene, but has been measured at approximately 8 lumens for a basic wick lamp (Mills 2003). The team 

assumed that any new product, especially one that featured solar and LED technology, would have to 

outperform existing lighting options, leading to a minimum acceptable light output for the product 

defined as 15 lumens.  

 

Table 4.  Sampling of different light sources and lumen output  

Light source Power Luminous flux 

Incandescent light bulb 100W 1700 lumens 

Fluorescent tube light T8 32W 3000 lumens 

Fluorescent lantern 6W 340 lumens 

LED flashlight 1W 40 lumens 

Kerosene wick lamp or candle n/a 8 lumens 

 

 

The daily runtime requirement determined product charging and energy storage requirements. Based on 

user responses about their current kerosene and candle usage patterns, 4 hours was established as the 

required nightly runtime for the product. This meant that the product needed the capacity to sufficiently 

charge the battery in one day to provide 4 hours of runtime. The average peak sun hours for Zambia was 

estimated at 5.5 hours (NASA 2008).8 

 

Almost all research participants were familiar with using batteries in electronic devices, and many 

inquired about the type of battery that would be used, how long it would last, and whether it could be 

                                                         
8 Based on Lusaka’s longitude and latitude. Peak sun hours means the equivalent number of hours per day when solar 
irradiance averages 1,000 w/m2. Put differently, 5.5 peak sun hours is equal to an average of 5,500 Watt-hours/m2 
per day. Importantly, while there is seasonal variation of insolation in Lusaka, the month with the least, June, still 
averages 5.2 peak sun hours. See Appendix C for complete data. 
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replaced. There was clear familiarity with battery charging issues, particularly related to low-quality 

batteries and imported LED products. Respondents reported that low-cost lights from China, typically 

non-solar rechargeable LED torches, tend to experience problems with battery charging and circuit failure, 

leading to customer skepticism. Other research (Mills and Jacobson 2008; LADM 2010) supports the idea 

that low-quality products are currently spoiling the market in sub-Saharan Africa. Therefore the UC Davis 

project team decided that the design should include a “smart” circuit and charging function, which 

protects the battery from overcharging, deep discharge, and accidental discharge. This functionality 

prolongs battery life, and because replacement batteries constitute the only operating cost of the 

product, has a significant effect on total cost of ownership. 

 

Table 5.  Key performance specifications of final design 

Performance area Specification Rationale 
Illumination intensity Provides a minimum 15 lumens of 

usable light  
Equal to or slightly better than light 
output of kerosene wick lantern or 
candle 

Illumination quality Provides light that is warm in color 
(<4000K) and maintains constant 
brightness 

Users prefer warm color; circuit is 
designed to maintain constant 
brightness (minimizes fading with 
battery power) 

Run time Runs for at least 4 hours on a 
charge 

Majority of users indicated nightly usage 
of 3-4 hours for kerosene lantern or 
candle 

Charge time Re-charges in 1 day Required for daily use; based on 
Zambia’s latitude and average of 5.5 
hours peak sun daily 

Maintenance Includes smart charge protection: 
Automatic low-voltage shut-off to 
prevent damage to battery, 
overcharge protection, sunlight-
sensor to prevent accidental 
draining of battery if light is left on 

Charge protection increases battery life 
and helps to differentiate product from 
cheap imports that are spoiling the 
market 

Maintenance Uses standard, widely available AA 
battery type 

Enables users to replace the battery 
themselves without tying them to 
proprietary technology 
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Determining cost constraints 
Analyzing lighting expenditures from the customer perspective was important in order to understand the 

cost constraints that would make the new design “affordable” for users in Zambia. As an inherently 

relative concept, affordability has no absolute metric or benchmark. In the context of low-income 

customers of the Global South, Anderson & Billou (2007) define it as “the degree to which a firm’s goods 

or services are affordable to [base of the economic pyramid] consumers”; noting also that due to the cash 

flow constraints of daily wages, for many low-income households the upfront cost is the real barrier. For 

relative measures of affordability, one successful social entrepreneur working in health services used a 

heuristic target to define affordability of health products as a price equivalent to the average monthly 

income of those in the bottom 60% of the income bracket (Koch 2006). Of course, an important 

dimension of affordability is access to alternatives: where a medical device or a mobile phone might not 

have viable alternatives, and thus could still be seen as affordable despite relatively high prices, a solar-

powered light is competing with well-known, low-cost alternatives in candles and kerosene and therefore 

faces more price pressure. Another relevant example of this challenge are fuel-efficient cook stoves, 

which compete with traditional cooking methods and devices.  

The project team therefore made its assumptions about affordability based on customers’ costs of using 

existing alternatives, and validated this with informal interviews. For kerosene and candles, average 

household expenditures in five sub-Saharan countries surveyed by the World Bank ranged from $2.63 - 

$4.64 per month; these expenditures represent operating costs and do not include the initial investment 

cost of purchasing a lantern (LADM 2009; LADM 2009). The author’s research in Zambia indicated total 

monthly household operating costs ranging from $4-$8 per month, with insignificant difference between 

candle users and kerosene users. Upfront costs for fuel-based lighting products include the purchase price 

of the kerosene lamp and wick, while candles are essentially a self-contained fuel so the purchase price is 

considered an operating cost. Kerosene hurricane lamps with glass enclosures cost $2-$5 in Zambia, while 

basic kerosene wick lamps—typically fashioned from tin cans or other discarded material—can be 
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purchased for less than $0.25. Standard candles cost 700-1000 kwacha, or approximately US$0.14-$0.20, 

and last 1 to 2 nights, depending on size and quality of the candle. Most households report using multiple 

instances of either kerosene lamps or candles, typically with one instance in each room being lighted. 

Some respondents reported carrying a kerosene lamp or candle from room to room, though this was less 

common.  

In focus groups conducted by the project team, most users of kerosene and candles were aware of the 

high operating costs they pay compared to those with grid electricity. They also understood that solar-

powered lights are cheaper to use compared to kerosene or candles, but they could not afford such a 

large initial investment. While kerosene and candles have relatively high operating costs, these 

expenditures can be broken down into affordable increments (i.e., individual candles, or 100 mL of 

kerosene) that can be purchased as needed, similar to how small satchels of detergent or a few minutes’ 

worth of mobile phone talk time are purchased. Compared to solar-powered lights, the barrier to entry 

for kerosene or candles as initial investment cost, is low enough to make them accessible to even the very 

poor. 

Basing estimated affordability on the payback of that initial investment—where the avoided costs of fuel 

add up to the purchase price of the SPL—provides a more contextual measurement compared to absolute 

dollar figures. Paul Polak has suggested that a payback period of 5 months for a solar lantern is acceptable 

for many low-income households (Polak 2008).  For a small SPL such as designed by the UC Davis project, 

the payback calculation was based on the operating costs of a single candle that the SPL would replace—

not the total monthly expenditure on all lighting, which would include simultaneous instances of lighting. 

Given that target customers in Zambia were candle users paying $2-$4 per month for each candle they 

kept lit, a payback period of 5 months would require a final retail price of $10-$20.  This price range was 

supported anecdotally through unstructured interviews with candle users, few of which said they were 

able or willing to pay more than $10 for an SPL without a payment plan. Of course, a stated “willingness 

to pay” response in a survey or interview may not correlate to actual purchase behavior. 
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Final design characteristics 
The project team used the user preferences, performance specifications, and cost constraints, and 

plugged these into a basic user-centered design approach, whereby the needs and preference of the user 

serve as the foundation for design decisions (IDEO 2009). Because the underlying technology used in solar 

portable lights is well understood, the design challenge was to determine an optimal form factor and then 

select the combination of components that most effectively produced the required performance within 

the cost constraints. This section includes discussion of the final product form factor and features, 

followed by an optimization exercise that was used to select the best combination of key components. 

 

Form factor and general components 
Based on input from the focus groups, the project team decided that ambient lighting could serve more 

needs than focused task lighting (e.g., torch or desk lamp) and therefore have a more compelling value 

proposition for the customer. In terms of form factor, it was determined that a hanging overhead light 

could maximize the usable light emitted due to virtually 100% of the light being directed down toward the 

user, mimicking the basic “light-bulb-on-a-wire” ceiling lights common to many electrified homes in 

Zambia. This configuration is supported by modern LED designs, where an angle of illumination of 120 

degrees is common.  

 

Figure 1. Final product: A household light that mimics ceiling lights in grid-powered homes 

 

         

 



23 

 

 

 

The final design (Figure 1) comprises a small solar panel, to be hung on the roof or in a window, 

connected with a 4-meter wire to the light body, or luminaire. The length of wire and installation 

requirements were validated against common house dimensions in Zambia, as well as by a building 

engineer for Habitat for Humanity, a large NGO focused on construction of low-income housing in 

compounds outside of Lusaka. While the product can perform as a conventional hanging ceiling light, the 

wire has an inline connector (standard DC plug of a type used on many consumer electronics) so that the 

luminaire can be disconnected from the solar panel and used in another room or as a mobile light.  The 

team had sought to distinguish the product from a torch due to reported customer association of the 

torch form factor with lower-price and lower-quality products (LADM 2009). However, in focus groups 

there were strongly expressed requests for mobility, which was enabled by the addition of the inline 

connector. The single battery is a rechargeable NiMh AA, a common, non-proprietary battery type that 

can be replaced by the user. A simple on-off switch controls operation; there are no variable lighting 

modes. The lamp itself is a high-efficacy surface-mount LED. 

 

In order to maximize the generalizability of this product design research, the key components are grouped 

into six basic “elements” that are common across many solar portable lights: 1) solar cell for converting 

sunlight to electrical energy, 2) battery for energy storage, 3) LED lamp for illumination, 4) electronic 

circuitry for controlling operation, 5) external wiring, and 6) case and packaging. Table 6 indicates the key 

considerations for each element. 

 

Table 6. Key components in the product design 

Element Considerations 
Solar cell • Must deliver sufficient power to charge 1.2V battery in 5.5 hours of average peak 

sun hours in Zambia 
• Resistance in wiring can be significant at low voltages and must be accounted for 
• Amorphous silicon, common for this size, is cheaper but less efficient than 

polycrystalline  
• Epoxy-coated solar cells yellow with exposure to sun, decreasing efficiency within 2 

years; PET-laminated lasts longer but has higher cost 
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• Glass cover and aluminum frame extend cell lifespan, but have higher cost 
Battery  • Charging capacity should be oversized from daily requirements in order to provide a 

buffer for cloudy days, which extends the working life of the battery 
• Battery types evaluated over cost, energy density, deep discharge tolerance, self-

discharge rate, toxicity and other parameters; nickel-metal hydride (NiMh) was 
deemed most appropriate  

• AA form factor is nonproprietary, available globally 
• Single battery avoids user uncertainty in replacement 
• Battery lifespan =  50% capacity after 500 cycles  

LED • Efficacy (lumens-per-watt) is significant factor in overall product performance 
• LEDs typically designed to run in specific power range 
• Lower-quality LEDs can have significant variations in performance and color9  
• Color temperature can be an issue—cooler white is cheaper than warm white for the 

same light output; user preferences may depend on familiarity with fluorescent 
lighting  

Circuitry • Energy-efficient design is critical for low-power application 
• Selection of LED driver / integrated circuit changes efficiency 
• Circuit should deliver constant current for optimal LED operation10 
• Single-sided PCB reduces fabrication costs, but total surface area is more significant 
• Surface-mount components are cheaper for automated assembly, but may preclude 

manual assembly 
• Switch quality is important, especially given various environmental conditions 

External 
wiring 

• Sufficiently small  resistance for low-power DC current 
• Molded connector with appropriate grab strength and durability 

Case and 
packaging 

• Injection-molded plastic housing with removable cover  
• Simplified geometric case design has lower tooling cost, additionally this  minimizes 

material usage for lower per-unit costs and shipping costs 
• Basic packaging minimizes material for lower per-unit costs and shipping costs 
• Simple cardboard box with paper insert 

 

 

System cost optimization: methodology 
In general for a given element, such as the LED, an increase in performance or efficiency comes with an 

increase in cost (See Figure 2). However, these increases are not always linear, and due to the 

dependencies and specific interactions between components, it is not always apparent which element 

combination will offer the most cost-effective performance for the product as a whole. Thus the project 

team performed an optimization exercise to determine the most cost-effective combination of elements.   
                                                         
9 See Mills, E. and A. Jacobson (2008). "The Need for Independent Quality and Performance Testing of Emerging Off-grid White-LED 
Illumination Systems for Developing Countries." Light & Engineering 16(2): 5-24. 

  

10 Ibid.  
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It should be noted that due to multiple specifications of each individual component, and differences in 

quality that may or may not be reflected in the measured performance, it was not within the scope of this 

exercise to incorporate all individual component characteristics into the analysis. For example, one type of 

wiring may have a more durable plastic sheath, or a certain type of solar panel may have better solder 

pads on the back for attaching the wiring. While these kinds of features play a role in ultimate part 

selection, they were not considered in this analysis.  

 

Figure 2.  LED efficacy and cost for specific power range. Bubble size indicates  
max power capacity of LED (higher power typically correlates to higher lumen output) 

 

 

 

To conduct the optimization, the team first defined the basic circuit parameters, such as battery type and 

LED driver, which would be held as constants. Based on this, the team established a range of performance 

specifications that would be relevant to explore for each of the following four elements: 1) solar cell, 2) 

battery, 3) LED, and 4) external wiring. These four were selected based on whether the element  a) has a 

significant effect on overall performance, and b) is a discrete component that can be substituted in and 
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out of the circuit. Note that the wiring is significant given the low voltage (2V direct current) and length (4 

meters). Other components, such as the LED driver/IC, also play a large role in overall product 

performance but are integrated too tightly into the circuit design to enable the substitution of different 

models with varying performance and pricing. For each element three different values, or “tiers,” were 

identified, and the associated performance and cost characteristics were determined (Table 4). The values 

tested were based on actual products with performance characteristics within the range deemed viable, 

based on preliminary testing. Because the function of the circuit is essentially the same for all element 

combinations, a single function was used to predict performance and cost for each of the 81 (i.e., 34) 

combinations considered (Table 5). Lumen output was normalized across all combinations at 18 lumens 

(which met the performance requirement of >15 lumens) so resulting runtimes and costs were the 

outputs for comparison.  

 

Table 7. Elements tested in optimization exercise 

Element Variable Units Values tested 

PV cell Current Amps 0.25 0.30 0.35 

Wiring Resistance Ohms 0.67 0.42 0.27 

Battery Capacity Watt-hours 1.8 2.04 2.4 

LED Efficacy Lumens/Watt 46 60 90 

 

Table 8. Assumptions and constants 

Assumption Value 

Voltage of PV cell (Vmp) 2 

Charging efficiency of NiMh battery 66% 

Daily peak sun hours  5.5 

Efficiency of circuit 85% 

Nominal voltage of AA battery 1.20 
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Calculations 
The following relations were employed to calculate product performance: 

(PV power  – diode loss – wiring loss) * charge eff. of battery * daily sun hours = Watt-hours per day into battery (1) 
Lumen output = 18 lumens = power to LED * LED efficacy      (2) 
Watt-hours per day into battery * circuit efficiency / power to LED = runtime in hours per day   (3) 
 

Note that equation (2) was used to normalize all combinations to a set lumen output, designated at 18 

lumens, by adjusting the amount of power sent to the LED. Clearly, more efficient LEDs use less power to 

achieve the 18 lumens, and therefore were run at lower power. The ‘power to LED’ value was then 

plugged into equation (3) to determine ‘runtime.’ For each combination the individual component costs 

were summed to determine cost-effectiveness for that combination relative to runtime.  

 

Optimization results 
The 81 combinations showed a range in runtime from 3.0 to 8.7 hours, with 57 combinations delivering 

the minimum requirement of at least 4 hours runtime (see Figure 3). The combination that ran for 8.7 

hours cost 63% more than the lowest-cost combination, but provided almost triple the runtime.  To 

determine the optimal configuration, the cost of each combination was divided by the daily lumen-hours 

it provides (because all combinations were set to 18 lumens, this is essentially equal to the runtime), 

providing a metric of “dollars per lumen-hour.” Note that this metric is only meant as a relative measure 

within this optimization exercise—the cost used only represents a subset of the components in a 

complete SPL, and the cost is not amortized over time as in a “levelized cost of electricity” metric—so this 

discussion does not focus on the actual dollar figures. Nevertheless this metric provides a guide for the 

most cost-effective combination, which included the most expensive LED, wiring, and solar panel, and the 

2nd most expensive battery. See Appendix D for a table showing the results of the 81 combinations, as well 

as additional graphs showing component performance vs. cost.  
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Figure 3.  Runtime plotted against cost for each of the 81 combinations;  
note that cost shown here is only for the 4 selected components 

 

 

 

 

All of the top combinations in terms of dollars per lumen-hour used the most expensive (and most 

efficient) LED, demonstrating that the LED was the most cost-effective component to invest in—extra 

dollars spent on the LED resulted in better performance gains, all else held constant, than any other 

tested component. These findings support general energy efficiency theory—given that the LED is the 

final component in the circuit in terms of electricity flow, for every efficiency gain to the LED, every 

component upstream of the LED runs with lower power and current and can often be downsized in 

performance and cost. The project team used the results from the optimization analysis to select specific 

models for each of the components tested. Specifically, the team modified the initial design to include a 

higher-efficiency LED, a lower-capacity battery, and optimized resistance for the external wiring.  
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Cost analysis 

Production costs 

Once the final design was prototyped and tested with users, the project team hired a Hong Kong-based 

engineering firm to manage sourcing and manufacturing in Shenzhen, China. The manufacturing of the 

light occurred in September of 2010. This cost analysis therefore represents actual costs paid by UC Davis 

for production of 1,500 units. 

 

The total variable costs of production were $8.86 per unit11, approximately $2 higher than originally 

estimated. Breaking down costs into the six categories (plus assembly) confirms the importance of the 

four key components included in the optimization exercise (solar panel, LED, battery, and wiring), as they 

are the four most expensive components and represent approximately 42% of the total unit cost (see 

Figure 3). Because these costs are based on low-volume manufacturing of only a few thousand units, 

there would be significant decreases in pricing for higher quantities. In particular, the passive electronic 

components (e.g., resistors, switch, etc.) that contribute to the “circuitry” category would likely see 

significant price reductions in larger volumes. In addition, the cost of assembly would see large price 

reductions as volumes increased: The UC Davis industrial design was not optimized for automated 

processes, and therefore required hand assembly work such as stripping wires, threading wires through 

the plastic cabinet and PCB, hand-soldering through-hole components, and hand-soldering wires to the 

solar panel. A more sophisticated industrial design could eliminate many of these elements. 

 

 

                                                         
11 Note that the cost structure of the final light design does not include tooling or set-up costs, only the direct, 
variable costs of the materials, assembly, and packaging, in effect the per unit “FOB” (freight on board) cost of the 
complete product ready to be shipped. This product required approximately $6,000 in tooling costs for the injection 
molds. Once shipping, insurance, taxes, and distributor margins are factored in, the retail price may be approximately 
double, depending on the target market for distribution. 
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Figure 4. Cost structure of final design.  Total cost: $8.86 

  

 

The cost breakdown by category shows some similarities to an LADM industry survey of SPL production 

costs (LADM 2010). Because the categories used in the LADM study do not exactly match with this case 

study, and the data comprising those categories were not available, it is not possible to provide an apples-

to-apples comparison for all components. For example, the LADM study groups assembly costs with the 

case, but it’s unclear if these are just final assembly, or include PCB assembly. What is apparent is that the 

median SPL on the market today uses much larger and costlier solar cells, batteries, and LEDs, resulting in 

a total manufacturing cost of about $19.50 vs. the UC Davis cost of $8.86.  This large difference in 

component size (e.g., a 2.5W solar cell for industry median vs 0.5W for UC Davis) will largely translate into 

performance gains.  

 

It is interesting, however, that the increase in size and performance does not seem linear in respect to 

percentage of overall costs. For example, in the industry median cost structure the solar cell accounts for 

almost 1/3 of the cost, and the solar panel for almost 1/4 of the cost. That this ratio doesn’t hold when 

the entire product is scaled down suggests that there is some cost “floor” or minimum costs that are 

unavoidable even when the performance is scaled down. Some of this could be in the active electronic 

components—for example, a $0.34 integrated circuit/driver is the minimum needed, whether the solar 

panel is 5W and sending high levels of current or the panel is 0.5W and sending low amounts of current. 
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Most of this minimum cost is likely in the final assembly costs, where the level of skilled labor and the 

amount of time it takes to solder solar panel leads is similar no matter the size of the panel. Obviously, 

the higher the volume or quantity of a given product, the lower the assembly costs, and the UC Davis 

product pricing shown was for very small quantities of 1,500 units.    

 

Table 9.  Comparison of UC Davis costs vs. industry medians (LADM 2010) 

UC Davis SMART Light 

 

Industry medians   
solar panel $1.12  13% solar panel $6.10  31% 
battery $1.05  12% battery $4.50  23% 
LED $0.89  10% LED $3.70  19% 
wiring, circuitry $3.16  35% circuitry $2.70  14% 
case, packaging $1.07  12% case, assembly $2.50  13% 
final assembly $1.57  18% Total $19.50  100% 
Total $8.86  100% 

    

Production cost projections 
The market for off-grid lighting solutions is expected to grow at a significant rate, with one estimate of 

40%-65% year-on-year growth in Africa through 2015 (LADM 2010). As more organizations enter the 

market to meet this demand, manufacturing costs will decrease as volumes rise. In addition, global 

demand for the core technology of SPLs—solar PV and LEDs—will continue to drive improvements in 

manufacturing and technology advances for those specific components, leading to even lower prices and 

costs of production. As a result, LADM estimates a 40% overall reduction in manufactured cost for SPLs by 

2015, with the majority of that reduction coming from advances in LED technology (LADM 2010).  

 

In the laboratory, LEDs have broken the 200 lumens-per-watt barrier (Cree 2010), and production LEDs 

have reached over 150 lumens-per-watt. While the top-performing LEDs are likely outside the cost range 

for most SPLs, these advances in performance drive down costs of lower- and mid-range power LEDs. In 

terms of the solar cell, global demand will lower prices of mono- and poly-crystalline cells in general, but 

the small size of the typical SPL solar cell will likely always incur a much higher per-watt price compared to 
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larger SHS-scale or utility-scale solar panels in the 100+ watt range. Perhaps more interesting are 

developments in amorphous silicon and other types of thin-film PV technology. While less efficient than 

crystalline forms, thin film is typically much less expensive to produce, and its flexibility and light weight 

can provide distinct advantages in shipping and distribution.  

 

Customer costs 
While this study focuses on costs of production, it is also important to evaluate affordability from the 

customer’s perspective. Key costs for the customer are: upfront cost (first cost, or retail price), operating 

costs (running costs), and total cost of ownership (TCO, the sum of all costs over the lifetime of the 

product). The retail price will be cost of production, plus some combination of shipping, insurance, freight 

forwarding, import duties/tariffs, VAT, distributor margin, retailer margin, and other costs. A common rule 

of thumb for estimating retail price is to double the cost of production. For example, Mills et al. (Mills 

2007) estimated that a solar-powered light landing in Mombassa, Kenya, that cost $45 to manufacture 

would sell for a retail price of $85 (see Table 10). LADM also estimates a rough doubling of manufactured 

cost to arrive at final retail price, though it assigns a larger margin to the retailer (LADM 2010). Using 

these numbers, the UC Davis SMART Light with a manufactured cost of $8.86 would have a retail price of 

approximately $16.56. Given the relatively poor infrastructure and landlocked nature of Zambia, the 

project team estimates the retail price will be closer to $18-$20.  

 

Table 10. Mills’ estimated additional costs for distribution in Kenya 

Additional costs incurred (cumulative)  

Shipping, handling, insurance 11% 

VAT  16% 

Import duties  10% 

Distributor margin 20% 
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Retailer margin 10% 

To relate the customer’s financial costs to actual light output, measured in lumens, there are a number of 

different metrics used in the literature (Mills 2003; Peon, Doluweera et al. 2005; Mills and Jacobson 

2008). The author used a measurement by Mills and Jacobson (2008), “dollars per 1000 lumen-hours,” 

which expresses the total cost of ownership of a product over its stated lifetime to the amount of useful 

lighting service produced. With a two-year lifetime, the final design delivers light at the rate of $0.27 per 

1000 lumen-hours as shown in Table 11. This compares to $2.18 per 1000 lumen-hours for a candle and 

$1.87 per 1000 lumen-hours for a basic kerosene wick lamp.  

 

Table 11.  Inputs for determining cost per unit-of-service for final design 

Metric Value 

Product retail cost $18 

Product lifetime 2 years 

Operating cost (battery replacement) $2 

Total cost of ownership  $20 

Lifetime light output  52,560 lumen-hours 

Cost per unit-of-service $0.27 per 1000 lumen-hours 

 

 

Assumptions: 

1. Battery replacement required after 1.5 years, single battery cost is $2 
2. Daily operation is 4 hours 
3. Light output is 18 lumens 
4. Kerosene: burn rate = 13 liters/year, cost of kerosene = $1.50/liter, cost of wicks = $1.42/year, 

cost of lamp = $1, lifespan of lamp = 1 year, luminous flux = 8 lumens 
5. Candle:  burn rate = 0.5 candle/day, cost of candle = $0.14, luminous flux = 8 lumens12 

 

                                                         
12 Using the kerosene lamp burn rate and light output established by Mills (Mills, 2003). All costs adjusted for Zambia, 
including prices for kerosene as typically purchased in small quantities with associated markup. 
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While the cost-per-service comparisons to kerosene and candles are overwhelmingly positive for the final 

design, this is invariably the case with solar powered products measured over their lifetime. As noted in 

the introduction, the objective of the UC Davis project was to design an SPL that could be purchased 

without financing in order to improve chances of adoption. Estimating this affordability threshold is 

difficult and very context-dependent, which leads to using the idea of payback period (amount of time for 

the avoided costs of paying for candles/kerosene equal the upfront cost of the SPL) as a proxy for 

affordability. However, it may be that the only real test of affordability is whether customers purchase the 

product.  

 

Research limitations 
The research methodology for understanding user preferences lacked scientific rigor, with two primary 

causes: First, the UC Davis project team did not set up an adequate structure and framework for 

conducting the research, both when onsite and when trying to manage the research remotely. For 

example, criteria for which communities to sample were too vague, leaving too much room for subjective 

selection by the researcher. This specific issue is complicated by the logistical constraints of a small study, 

where truly random selection or larger sample sizes were out of scope given the budget and time 

available.  Secondly, the training of the Zambian staff was insufficient in training them to perform 

objective research. Without clear structure and specific guidelines—for example, how to avoid selection 

bias in survey subjects, how to avoid asking leading questions during an interview, etc.—the staff 

collected data in a manner that could be considered casual in nature. While these failings on the part of 

the UC Davis project team, primarily of the author, are a clear deficiency, the data that was collected does 

align with the vast majority of the published results of larger studies such as the World Bank LADM.  
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Additional discussion 

Industrial design considerations 

While the stated emphasis throughout the design process was on eliminating costs for increased 

affordability, there were at least two instances when the team elected for a more expensive design. The 

initial prototypes were not meant to be mobile—the light was hard-wired to the solar panel—but when 

user-tested in Zambia, there were overwhelming calls for the light to be detachable. This necessitated the 

addition of an inline connector (ultimately a standard DC plug was chosen) that added at least $0.35 to 

the BOM. The second instance of cost-cutting that was reversed in the final design was for the plastic 

cover over the circuit board. The later prototypes included a 1mm-thick piece of clear sheet plastic cut to 

fit over the circuit board and kept in place with small tabs. User feedback was that this design was ugly, 

and made the product appear low-quality. For the final design, the team had an additional injection mold 

built, and the cover is now made out of a piece of injection-molded ABS similar to rest of the case. This 

change probably only added around $0.15 per unit in materials cost, but required approximately $2,000 in 

additional capital for the injection mold tooling. The lesson learned is that a complete focus on reducing 

cost can be counter-productive if it reduces the value proposition for customers; continuous and iterative 

user testing can mitigate this possibility.  

 

The role of quantity in the SPL design 
Due to volume pricing, the costs of production for building 1,000 SPLs may be 10%-20% higher than the 

per-unit cost of building 50,000 SPLs. Production quantity will also affect decisions on tooling or 

production processes. As an example, the injection mold for the plastic case could be machined  out of 

different types of metals with varying hardness, with the harder materials costing more to make into 

molds but lasting longer. If a production quantity is known, then amortizing the capital costs over time 

can provide guidance for this decision, but this is more difficult for new products without clear estimates 

of quantity. In terms of production processes, whether to use manual or automated manufacturing 

depends mostly on quantity, but also on the cost and skill level of available labor, the degree of quality 
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control and uniformity required, the desired impact on employment, and the time available. The project 

team found that semi-skilled labor for tasks such as assembling circuit boards and manual injection 

molding of plastic were cost-competitive with automated processes at volumes of only a few thousand 

units per month.  

 

SPL value proposition also depends on performance, quality, and other non-cost issues 
While this article has focused on costs of production and therefore retail price as the key factor in 

affordability of SPLs, there are clearly many factors that affect adoption and long-term success of the SPL 

market. User preferences in terms of form factor, features, user interface, and branding, all play 

significant roles. The market for SPLs and other energy services is diverse, with customers from very 

different income levels, geographic locations, and cultural norms. Already the market is seeing 

specialization as manufacturers find and serve niche customer segments, and this trend is likely to 

continue with more user-centric design (LADM 2010).  Of course, product design is only half the equation. 

Even a well-designed product that meets users’ needs cannot succeed without successful marketing, 

distribution, financing, and operational support.  

 

Need for quality control, standards, testing in the SPL market 
Because of the pervasiveness of inferior lighting products and market poisoning, quality is a key concern 

for consumers and manufacturers alike, as savvy consumers are demanding warranties to protect their 

investments. Respondents to our research in Zambia frequently inquired about the warranty, assuming 

there would be one and stating they would not consider a purchase without one. There is a large push for 

the establishment of industry standards and quality assurance programs by LADM in conjunction with the 

Lumina Project. The latter has established basic performance testing criteria, including measurements of 

luminous flux, spatial variation of illuminance, frequency of charging as function of desired light per day, 

and more (Mills and Jacobson 2008). 

 



37 

 

 

Conclusions and further research 
Through field research and user testing of prototypes in Zambia, it was determined that a solar portable 

light with light output at least as bright as a simple kerosene lamp or candle that could run for 4 hours on 

one day’s charge would be acceptable to many users. Translating user preferences into functionality and 

performance requirements is essentially a design process, with inherent subjectivity that is difficult to 

mitigate. Using a more formal and rigid design methodology could have eliminated some subjectivity, but 

even in selecting a methodology the designers are making decisions about the outcome. Within these 

constraints, it was determined that an SPL could meet the basic performance requirements of users with 

a 0.5W solar cell, 2000 mAh AA battery, and 60-lumen/Watt LED in a standard plastic housing. An 

optimization study revealed that specifying a higher-efficacy LED reduces the product cost by lowering the 

power requirements of the PV cell, battery, and wiring, therefore making the LED the most cost-effective 

component to focus on.   

 

This minimal configuration can be manufactured in China for less than $9 per unit at low quantities of less 

than 10,000 pieces. This translates into an estimated retail price of $18-$20 in Zambia, or a simple 

payback period of 5-10 months depending on candle usage. This payback period probably puts this SPL 

out of reach of many low-income households in Zambia, which might require a payback period of 3 

months or less.  

 

The specified manufacturing cost can definitively be lowered through higher-volume manufacturing, 

which would specifically decrease the costs for passive electronic components and final assembly. In 

addition, advances in solar cell and LED technology and manufacturing processes promise steadily 

decreasing costs for components over the next 5-10 years. 

 

Further research is needed to understand the value proposition of solar-powered lighting for off-grid 

users of fuel-based lighting. This project examined user preferences and translated these into a low-cost 

SPL design that, in theory, meets users’ needs. Additional study of user reaction to the final design—Will 
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people purchase it? Who will and who won’t? And why?—is necessary for a more complete picture of this 

SPL’s affordability and success in meeting user needs. Moreover, it may be that focusing only on lighting 

end-use may miss the greatest opportunities for widespread adoption of off-grid solar power: Many, if 

not most, households in Zambia have at least one mobile phone that requires charging from an electrical 

power source, which is typically expensive and inconvenient for rural households. Numerous solar-

powered lighting systems, especially SHSs, include mobile phone charging as an additional feature, and in 

our research, one of the first questions asked in focus groups or interviews was “Will this charge my 

mobile phone?” Therefore lighting products that incorporate or facilitate mobile phone charging may 

have a higher chance at success than lights alone.  
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Appendix A.  Customer survey instrument 
 
Lighting the Way  
Customer Survey  -  v.3 
 
Date:    _______________ 
Community name:   _______________ 
Community population:  _______________ 
Distance from Dhaka:  _______________ 
Facilitator:    _______________ 
Self-completed:   _______________ 
 
 
LIGHTING USAGE 
 

1. What do you use for lighting? Circle more than one if necessary. 
 

Paraffin/Kerosene Candles Torch (with batteries) 
 

2. How many people, including children, live in your house? 
 

1 2 3 4 5 6 7 8+ 
 

3. How many kerosene lamps or candles do you light at the same time?  
 

1 2 3 4 5 6 
 

4. Who purchases the candles/kerosene? 
 

Man   Woman 
 

5. How many times per month does the man or woman buy candles/kerosene? 
 

1 x per month  2x per month  3x per month  4x per 
month 

 
6. How many kilometers from your house is the shop where you buy candles/kerosene? 

 
0-1 km  1-3 km  3-8 km  8-15 km 15+ km 

 
7. How much money do you spend per month on candles/kerosene? 

 
100-150 t 150-250 t 250-500 t 500-750 t 750 + 

 
8. What activities do you and your family do at night using the light? 
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Visiting  Homework Cooking  Business Other  
  
 

9. Do your children light the candles/kerosene by themselves? 
 

Yes  No 
 

10. How many hours per night do you use lighting? 
 

1-2 hours 2-3 hours 3-4 hours 4-5 hours 6+ hours 
 

11. Have you seen a solar panel being used? 
 

Yes   No 
 

12. What is your roof made of? 
 

Iron  Asbestos  Grass 
 

13. How would you rate your ability to speak English? 
 

Very good  Good  Okay  Poor 
 
 

14. How would you rate your ability to read English? 
 

Very good  Good  Okay  Poor 
 

15. How many years of school have you completed?  
 

None  1-3 years 4-6 years 6-10 years University  
 

16. What kind of work do you do for income? 
_____________________________________________________________ 

 
17. In which month does your household have the most income? 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov   

 
18. About how much income do you think your household could earn in a month? 

_____________________________________________________________ 
 

19. What is one advantage of solar lighting over candles/kerosene? 
_____________________________________________________________ 
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SMART LIGHT 
 

20. How much would you pay for the SMART Light?  
 

250 taka 500 taka 750 taka 1000 taka 1500 taka 
 

21. Who would make the decision to buy a SMART Light? 

Man  Woman 

22. Where do you think the SMART Light should be sold? 
_____________________________________________________________ 

 
23. What kind of warranty would you want? 

_____________________________________________________________ 
 

24. If the price was good, why would you buy a SMART Light? 

_____________________________________________________________ 
_____________________________________________________________ 

25. Do you know where you can buy rechargeable AA batteries? 

Yes  No 

 

MOBILE PHONE 

26. Do you have a mobile phone?  
 

Yes  No 
 

27. How much did the mobile phone cost to purchase?  
 

500-100 t 1000-1500 t 1500-2000 t 2000-3000 t 3000+ 
 

28. How and where do you charge it? 
 _____________________________________________________________ 

 
29. How much does it cost to charge it? 

 _____________________________________________________________ 
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Appendix B.  Sample field report from Zambian staff 
 

 

LIGHTING THE WAY 
 

WEEK 1, 2  AND 3-DECEMBER 2009 REPORT 
 
The following activities were undertaken in the following peri urban areas: 

• CHUNGA 
• GEORGE 
• JOHN LAIGN 
• DESAI 
• CHAWAMA 
• KANYAMA 
• NGOMBE 
• KALIKILIKI 
• LUSAKA WEST 
• CHAISA 

 
 
                                    
 
The purpose of this research was to conduct interviews with fifty people. These people have no 
connection to the ZESCO grid and have no possibility of having electricity in the next five years. 
 
The interviews were done and it was discovered that most people in peril urban use candles 
against kerosene. The reason being that candle is available on the market and is safe to use than 
kerosene. To find and buy kerosene, one needs to go to the fuel filling station. This is a 
discouragement so to some people as it is better to buy a commodity which is nearer than that 
from far. Candles are sold in nearer shops than the Kerosene. Candle is well advertised on the 
Zambian market with most people knowing a better brand. 
 
In the above communities they buy candles on a daily basis and some do it weekly. 
The price of small candle is K500.00     (Five hundred kwacha) 
The price of medium candle is K700.00   (Seven hundred kwacha) 
The price of big candle is K1000.00           (One thousand kwacha) 
 
Most of the houses have got iron sheet . Most of them are single bed roomed houses. 
They charge the cell phones at the place called Tutemba at a cost of two thousand and five 
hundred kwacha (K2,500) or three thousand kwacha (K3,000). Some have to go and charge to 
their friends or relatives with electricity in the homes at no cost. Candles are bought mostly 
between 18 and 19 hours due to the fact that this is when there is a need of lighting. In some 
homes they share candles by cutting in two or three part so that every one can have light.  



45 

 

 

The majority uses light for cooking, family meeting, studies and business. They use light 
between 3 to 4 hours daily. Some people who can not afford candles cook out side when it is 
not dark; they go some times without using candle light. 
 
Men, women and children are involved in the family buying decision making unit. The women 
and children influence the man to buy candles, because every one has a need for light. For 
example the woman would want light for cooking, children will need it for studies and man will 
need it for eating after work or beer drinking. So we should involve a family in our smart light 
marketing system.  
 
I visited the television stations to find out on the rates on advertising .The visited stations were 
Mobi television, Muvi television and the rates are very high that our budget can not 
accommodate. So we are planning to approach the community radio station and find out how 
much they charge. 
 
I strongly feel we should continue with research in remote areas and come up with new plans. 
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Appendix C.  Monthly solar irradiance (insolation) for Lusaka, 
Zambia 
 

Based on NASA Surface meteorology and Solar Energy (SSE) data for latitude and longitude of Lusaka. 

Data assumes horizontal inclination (“flat plate”).  

 

Data online at http://eosweb.larc.nasa.gov/sse/global/text/22yr_swv_dwn  

 

Month Avg. peak sun hours 
January 5.38 
February 5.52 
March 5.57 
April 5.74 
May 5.52 
June 5.18 
July 5.44 
August 6.18 
September 6.67 
October 6.83 
November 6.14 
December 5.45 

Annual 5.80 
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Appendix D.  Optimization combinations and additional graphs 
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Comb. # PV Wiring Battery LED
Wh/day 

input
Battery 

constraint
Wh/day 

available
Power to 

LED Runtime Lumens Cost

Daily $ 
/lumen-

hour
78 0.35 0.27 2.04 90 2.04 2.04 1.73 0.20 8.67 18 $4.16 $0.0267
69 0.35 0.42 2.04 90 1.97 1.97 1.68 0.20 8.39 18 $4.11 $0.0272
81 0.35 0.27 2.4 90 2.04 2.04 1.73 0.20 8.67 18 $4.25 $0.0272
72 0.35 0.42 2.4 90 1.97 1.97 1.68 0.20 8.39 18 $4.20 $0.0278
48 0.3 0.27 1.8 90 1.76 1.76 1.50 0.20 7.49 18 $3.82 $0.0283
60 0.35 0.67 2.04 90 1.86 1.86 1.58 0.20 7.91 18 $4.06 $0.0285
39 0.3 0.42 1.8 90 1.71 1.71 1.46 0.20 7.28 18 $3.77 $0.0288
51 0.3 0.27 2.04 90 1.76 1.76 1.50 0.20 7.49 18 $3.88 $0.0288
57 0.35 0.67 1.8 90 1.86 1.80 1.53 0.20 7.65 18 $4.00 $0.0290
63 0.35 0.67 2.4 90 1.86 1.86 1.58 0.20 7.91 18 $4.15 $0.0291
42 0.3 0.42 2.04 90 1.71 1.71 1.46 0.20 7.28 18 $3.83 $0.0292
66 0.35 0.42 1.8 90 1.97 1.80 1.53 0.20 7.65 18 $4.05 $0.0294
54 0.3 0.27 2.4 90 1.76 1.76 1.50 0.20 7.49 18 $3.97 $0.0294
75 0.35 0.27 1.8 90 2.04 1.80 1.53 0.20 7.65 18 $4.10 $0.0298
30 0.3 0.67 1.8 90 1.63 1.63 1.39 0.20 6.94 18 $3.72 $0.0298
45 0.3 0.42 2.4 90 1.71 1.71 1.46 0.20 7.28 18 $3.92 $0.0299
33 0.3 0.67 2.04 90 1.63 1.63 1.39 0.20 6.94 18 $3.78 $0.0303
36 0.3 0.67 2.4 90 1.63 1.63 1.39 0.20 6.94 18 $3.87 $0.0310
21 0.25 0.27 1.8 90 1.48 1.48 1.26 0.20 6.30 18 $3.55 $0.0313
12 0.25 0.42 1.8 90 1.45 1.45 1.23 0.20 6.15 18 $3.50 $0.0316
24 0.25 0.27 2.04 90 1.48 1.48 1.26 0.20 6.30 18 $3.61 $0.0319
15 0.25 0.42 2.04 90 1.45 1.45 1.23 0.20 6.15 18 $3.56 $0.0322

3 0.25 0.67 1.8 90 1.39 1.39 1.18 0.20 5.91 18 $3.45 $0.0324
27 0.25 0.27 2.4 90 1.48 1.48 1.26 0.20 6.30 18 $3.70 $0.0326
18 0.25 0.42 2.4 90 1.45 1.45 1.23 0.20 6.15 18 $3.65 $0.0330

6 0.25 0.67 2.04 90 1.39 1.39 1.18 0.20 5.91 18 $3.51 $0.0330
9 0.25 0.67 2.4 90 1.39 1.39 1.18 0.20 5.91 18 $3.60 $0.0338

77 0.35 0.27 2.04 60 2.04 2.04 1.73 0.30 5.78 18 $3.55 $0.0341
68 0.35 0.42 2.04 60 1.97 1.97 1.68 0.30 5.59 18 $3.50 $0.0348
80 0.35 0.27 2.4 60 2.04 2.04 1.73 0.30 5.78 18 $3.64 $0.0350
71 0.35 0.42 2.4 60 1.97 1.97 1.68 0.30 5.59 18 $3.59 $0.0357
47 0.3 0.27 1.8 60 1.76 1.76 1.50 0.30 5.00 18 $3.21 $0.0357
38 0.3 0.42 1.8 60 1.71 1.71 1.46 0.30 4.86 18 $3.16 $0.0361
59 0.35 0.67 2.04 60 1.86 1.86 1.58 0.30 5.28 18 $3.45 $0.0363
50 0.3 0.27 2.04 60 1.76 1.76 1.50 0.30 5.00 18 $3.27 $0.0364
41 0.3 0.42 2.04 60 1.71 1.71 1.46 0.30 4.86 18 $3.22 $0.0368
56 0.35 0.67 1.8 60 1.86 1.80 1.53 0.30 5.10 18 $3.39 $0.0369
62 0.35 0.67 2.4 60 1.86 1.86 1.58 0.30 5.28 18 $3.54 $0.0373
29 0.3 0.67 1.8 60 1.63 1.63 1.39 0.30 4.63 18 $3.11 $0.0374
53 0.3 0.27 2.4 60 1.76 1.76 1.50 0.30 5.00 18 $3.36 $0.0374
65 0.35 0.42 1.8 60 1.97 1.80 1.53 0.30 5.10 18 $3.44 $0.0375
44 0.3 0.42 2.4 60 1.71 1.71 1.46 0.30 4.86 18 $3.31 $0.0379
74 0.35 0.27 1.8 60 2.04 1.80 1.53 0.30 5.10 18 $3.49 $0.0380
32 0.3 0.67 2.04 60 1.63 1.63 1.39 0.30 4.63 18 $3.17 $0.0381
20 0.25 0.27 1.8 60 1.48 1.48 1.26 0.30 4.20 18 $2.94 $0.0389
11 0.25 0.42 1.8 60 1.45 1.45 1.23 0.30 4.10 18 $2.89 $0.0391
35 0.3 0.67 2.4 60 1.63 1.63 1.39 0.30 4.63 18 $3.26 $0.0392
23 0.25 0.27 2.04 60 1.48 1.48 1.26 0.30 4.20 18 $3.00 $0.0397
76 0.35 0.27 2.04 46 2.04 2.04 1.73 0.39 4.43 18 $3.18 $0.0399
14 0.25 0.42 2.04 60 1.45 1.45 1.23 0.30 4.10 18 $2.95 $0.0400

2 0.25 0.67 1.8 60 1.39 1.39 1.18 0.30 3.94 18 $2.84 $0.0400
67 0.35 0.42 2.04 46 1.97 1.97 1.68 0.39 4.29 18 $3.13 $0.0406

5 0.25 0.67 2.04 60 1.39 1.39 1.18 0.30 3.94 18 $2.90 $0.0409
26 0.25 0.27 2.4 60 1.48 1.48 1.26 0.30 4.20 18 $3.09 $0.0409
79 0.35 0.27 2.4 46 2.04 2.04 1.73 0.39 4.43 18 $3.27 $0.0410
17 0.25 0.42 2.4 60 1.45 1.45 1.23 0.30 4.10 18 $3.04 $0.0412
46 0.3 0.27 1.8 46 1.76 1.76 1.50 0.39 3.83 18 $2.84 $0.0412
37 0.3 0.42 1.8 46 1.71 1.71 1.46 0.39 3.72 18 $2.79 $0.0416
70 0.35 0.42 2.4 46 1.97 1.97 1.68 0.39 4.29 18 $3.22 $0.0417
49 0.3 0.27 2.04 46 1.76 1.76 1.50 0.39 3.83 18 $2.90 $0.0421

8 0.25 0.67 2.4 60 1.39 1.39 1.18 0.30 3.94 18 $2.99 $0.0422
58 0.35 0.67 2.04 46 1.86 1.86 1.58 0.39 4.04 18 $3.08 $0.0423
40 0.3 0.42 2.04 46 1.71 1.71 1.46 0.39 3.72 18 $2.85 $0.0425
55 0.35 0.67 1.8 46 1.86 1.80 1.53 0.39 3.91 18 $3.02 $0.0429
28 0.3 0.67 1.8 46 1.63 1.63 1.39 0.39 3.55 18 $2.74 $0.0429
52 0.3 0.27 2.4 46 1.76 1.76 1.50 0.39 3.83 18 $2.99 $0.0434
61 0.35 0.67 2.4 46 1.86 1.86 1.58 0.39 4.04 18 $3.17 $0.0435
64 0.35 0.42 1.8 46 1.97 1.80 1.53 0.39 3.91 18 $3.07 $0.0436
43 0.3 0.42 2.4 46 1.71 1.71 1.46 0.39 3.72 18 $2.94 $0.0439
31 0.3 0.67 2.04 46 1.63 1.63 1.39 0.39 3.55 18 $2.80 $0.0439
73 0.35 0.27 1.8 46 2.04 1.80 1.53 0.39 3.91 18 $3.12 $0.0443
19 0.25 0.27 1.8 46 1.48 1.48 1.26 0.39 3.22 18 $2.57 $0.0444
10 0.25 0.42 1.8 46 1.45 1.45 1.23 0.39 3.14 18 $2.52 $0.0445
34 0.3 0.67 2.4 46 1.63 1.63 1.39 0.39 3.55 18 $2.89 $0.0453
22 0.25 0.27 2.04 46 1.48 1.48 1.26 0.39 3.22 18 $2.63 $0.0454

1 0.25 0.67 1.8 46 1.39 1.39 1.18 0.39 3.02 18 $2.47 $0.0454
13 0.25 0.42 2.04 46 1.45 1.45 1.23 0.39 3.14 18 $2.58 $0.0456

4 0.25 0.67 2.04 46 1.39 1.39 1.18 0.39 3.02 18 $2.53 $0.0465
25 0.25 0.27 2.4 46 1.48 1.48 1.26 0.39 3.22 18 $2.72 $0.0470
16 0.25 0.42 2.4 46 1.45 1.45 1.23 0.39 3.14 18 $2.67 $0.0472

7 0.25 0.67 2.4 46 1.39 1.39 1.18 0.39 3.02 18 $2.62 $0.0482

Combinations Calculations
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Additional graphs showing individual component performance vs. costs. For each component, 3 values 

were selected and entered into the optimization calculation.   
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